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ABSTRACT 

This thesis develops statistical analysis in support of Readiness-Based Sparing 

(RBS) for U.S. Navy aviation weapon systems. RBS seeks to determine the least-cost 

allowance list to meet pre-specified operational availability of specifically identified 

systems. The research shows how RBS products such as the Navy Aviation RBS Model 

(NAVARM) can be used by leadership and builders to anticipate changes in RBS cost as 

a function of changes in key inputs. We develop NAVARM Experimental Designs 

(NED), a computational tool created by applying a state-of-the-art experimental design to 

the NAVARM model. Statistical analysis of the resulting data identifies the most 

influential cost factors. Those are, in order of importance, availability goal, unit price, 

wartime flying hours, maintenance rate to failure, high priority order and ship time, 

number of aircraft, wholesale delay time, rotable pool factor, intermediate maintenance 

activity repair time, and mean time to repair. Seventy-five percent of NED predictions are 

within a 3% or less error of actual values for changes within 10%  to baseline values, 

and all predictions are within 7%. 
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THESIS DISCLAIMER 

The views expressed in this thesis are those of the author and do not reflect the 

official policy or position of the U.S. Department of Defense. The efforts put forth in the 

research were made to reduce all errors. The results obtained from this research have not 

been validated or endorsed by the U.S. Department of Defense or the U.S. Navy. The 

reader should know that applying any methods used in this research for other applications 

would be at his or her own risk.  
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EXECUTIVE SUMMARY 

The Naval Supply Systems Command Weapons System Support (NAVSUP 

WSS) Office Code N421 establishes inventory levels for thousands of items to ensure 

readiness of aviation weapon systems. Since 1985, Readiness-Based Sparing (RBS) is the 

concept and mandated method to set these aviation weapon-system inventory levels. 

(Naval Inventory Control Point, 2008, p. 4) RBS models seek pre-specified levels of 

operational availability (Ao) for multiple weapon systems at minimum cost. There are 

several RBS models and tools available to NAVSUP WSS. However, NAVSUP WSS 

cannot assess the sensitivity of the solution (specifically cost), other than modifying the 

key inputs and running each individual instance.  

In 2016, faculty at the Naval Postgraduate School developed the Navy Aviation 

RBS Model (NAVARM), a heuristic optimization model for single-site and multi-

indentured RBS problems. (Salmerón, 2016) NAVSUP WSS code N421 suggested NPS 

conduct a formal study of influential factors that affect RBS costs calculated by 

NAVARM. Since NAVARM is open source, we develop the NAVARM Experimental 

Designs (NED) tool to assess the influential factors.  

The thesis objective is to identify the factors most sensitive to the NAVARM 

output and find the meta-models that estimate RBS cost with minimal error. To enhance 

this study, N421 provides us with ten test cases that we can use to make our assessments. 

The test cases vary across multiple aviation platforms on both coasts. Examples of these 

platforms are USS Harry S. Truman (CVN 75) in Norfolk, Virginia and Marine Aviation 

Logistics Squadron 11 in San Diego, California.  

We integrate a nearly orthogonal and nearly balanced (NOB) mixed design 

spreadsheet with NAVARM. (Vieira, 2012) NOB provides designs that are “low 

maximum absolute pairwise correlation and imbalance,” thereby constructing fully 

spread-out and equally balanced values. (Vieira et al., 2013, p. 273) NOB is known to 

improve the cost estimate precision with less variance. We generate a 10%  scaling 

value in the NOB spreadsheet and apply it to the baseline values of the following 13 



xx 

factors to all test cases: expanded war flying hours; quantity per application; intermediate 

maintenance activity repair time; high priority order and ship time; wholesale delay time; 

unit price; maintenance rate to failure; rotable pooling factor; flying hours; mean time to 

repair; number of aircraft; RBS performance goal; and wartime flying hours.  

Since NAVARM operates in Visual Basic for Applications (VBA), we develop a 

set of VBA subroutines that interact with the NAVARM model. This process also 

captures the simultaneous variations of the 13 factors listed above and merges them with 

NAVARM RBS cost. We expect that this design of experiments will identify the 

relationship between factors and the NAVARM RBS cost. 

After paring the data from multiple trials, we perform a stepwise regression using 

the statistical software. We identify the most impactful factors along with the best meta-

model for estimating NAVARM RBS cost for each test case. In order of importance, the 

factors are availability goal, unit price, wartime flying hours, maintenance rate to failure, 

high priority order and ship time, number of aircraft, wholesale delay time, rotable pool 

factor, intermediate maintenance activity repair time, and mean time to repair. Major 

sensitivity assessments are as follows: 

1. Meta-model development using stepwise regression indicates that 60% of the 

models have only main effects (no two-way interactions or quadratic effects).  

2. Four test candidate files have a quadratic effect. The test candidate files with 

the quadratic effect are USS Bataan (LHD 5), USS BonHomme Richard 

(LHD 6), USS Iwo Jima (LHD 7), and FMS Denmark. Although these test 

candidate files are for sites with rotary wing aircraft parts, we cannot conclude 

that rotary wing aircraft cause this effect.  

3. Exponential and reciprocal transformations of one factor, availability goal, 

show no improvement to the overall meta-model development for those 

factors with non-linearity. Both transformations on availability goal cause R-

Square adjusted to decrease, Root Mean Square Error to increase, F ratio to 

decrease, and t Ratio to decrease compared to the non-transformed meta-
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models. This indicates that the quadratic fits best among the choices of 

transforming availability goal, vice exponentially or reciprocally.  

4. One of the test candidate files, Naval Air Facility Misawa, has main effects, 

no quadratic effects, and one two-way interaction. 

5. Both USS Bataan (LHD 5) and USS Iwo Jima (LHD 7) test candidate files 

have main effects, one quadratic effect, and one two-way interaction. 

6. The NED meta-model predictions have 50% of their predictions within a 

0.05% to 2% error range for the USS Harry S. Truman (CVN 75) test 

candidate file. The results of the other nine test candidate files have nearly 

75% of their predictions within a 3% or less error, while predicting 

NAVARM RBS cost. NED allows the user to make estimations of cost for all 

test cases within 7% of actual.   

All test cases except Maritime Aviation Logistic Squadron 11 (MAL) have either

goal or unit price as their number one factor. The MAL test case has wartime flying 

hours as its number one factor with unit price as second and goal as its third. The fact 

that Marine Corps is operating with less than half its aircraft available suggests that the 

remaining aircraft are being overused, resulting in greater wear and tear and yielding 

reduced airworthiness. Since this is based on retrospective data we cannot establish 

causality, but further investigation is warranted.   

Overall, we take a prognostic approach to conducting this research. We develop 

NED to make predictions from data generated by running thousands of NAVARM 

simulation trials over ten different aviation locations and platforms. This research furthers 

the development of the desired tool for NAVSUP WSS Office Code N421. N421 can 

now use current prediction expressions for the ten given cases when the changes to the 

existing factors are within 10%. If the changes exceed 10%, we can use NED with 

the new NOB, and analyze the output with any statistical software that includes stepwise 

regression for updated prediction expressions. However, in its current format, NED 

cannot accommodate new test cases and/or new factors.  
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I. INTRODUCTION 

There ain’t no rules around here! We’re trying to accomplish something! 

—Thomas Edison, 

American inventor 

The Naval Supply Systems Command Weapons System Support (NAVSUP 

WSS) mission “is to provide Navy, Marine Corps, Joint and Allied Forces program and 

supply support for the weapons systems that keep our naval forces mission 

ready” (NAVSUP WSS., 2017, Mission, para. 1). The primary focus of NAVSUP WSS

Philadelphia is on weapons system and aviation support through Readiness-Based 

Sparing (RBS). RBS models seek to determine the least-cost allowancing (i.e., 

establishment of inventory levels) to meet pre-specified operational availability (Ao) for 

all Weapon Systems (WS). Each of these WS consists of multi-indentured parts in the 

range of tens of thousands. The Department of Defense has used a number of RBS 

models since the 1960s (Defense Acquisition University, 2012). These models include

the Aviation Readiness Requirements Oriented to Weapon Replaceable Assemblies 

(ARROWS), the Service Planning Optimization (SPO) models, and Repairable Integrated 

Model for Aviation (RIMAIR). (Note: ARROWS, SPO, and RIMAIR are not available to 

the researcher, and are only discussed for informational purposes.) Naval Postgraduate 

School faculty and students are developing the Navy Aviation RBS Model (NAVARM) 

to guide NAVSUP WSS allowance setting. 

An RBS model consists of multiple key inputs such as: rotable pool factor (RPF), 

wartime flying hours (WFHRS), Ao goal, Unit Price, high priority order and ship time 

(HPOST), low priority order and ship time (LPOST), wholesale delay time (WDT), 

intermediate maintenance activity repair time (IMARPT), maintenance rate to failure 

(MRF), expanded war flying hours (EXPWFHRS), quantity per application (QPA), 

number of aircraft (NUMWS), mean time to repair (MTTR), and flying hours (FHRS). 
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These inputs are used to acquire Aviation Consolidated Allowance List (AVCAL) 

packages. Input values will vary by the type of allowance package, operational necessity, 

and supported aircraft. The input values are originated by Navy Enterprise Resource 

Planning, NAVSUP WSS internal business rules, and fleet maintenance, as well as policy 

from the Office of the Chief of Naval Operations (OPNAV) (Sax, 2012, pp. 4–7). As a 

result, NAVSUP WSS can improve efficiency and resource allocation by enriching the 

understanding of how these multiple inputs affect cost. Prior work on RBS assessment 

has involved determining the factor influence of the ARROWS model to determine RBS 

cost by varying one input at a time. The impact of jointly varying inputs has never been 

previously assessed. This thesis develops, and computationally implements, NAVARM 

Experimental Designs (NED) in order to provide insight into the question, “What are 

NAVARM RBS cost’s most influential factors?” 

A. PROBLEM INTRODUCTION 

In February 2017, Defense News reported that nearly two-thirds of the U.S. 

Navy’s F/A-18 Hornet and Super Hornets were grounded due to a shortage of parts at 

aviation depot level. (Cavas, 2017) The article also stated that 53% of all of the Navy’s 

aircraft were grounded as a result of Continuing Resolution Authority budget constraints, 

maintenance issues, and long lead times for spare parts. A recent example of this 

problem, as reported in February of 2017, was a reduction in mission capable spare parts 

available to the Marine Corps, which resulted in only 439 of their 1,065 aircraft to be 

airworthy. The Marine Corps had to reduce the number of MV-22 Ospreys from twelve 

aircraft to six in Africa due to their inability to sustain them in the crisis response task 

force (Seck, 2017).

Currently, the Operations Analyst Office Code N421 at NAVSUP WSS in 

Philadelphia, PA, uses “Readiness Suite” to create an AVCAL. Readiness Suite is a 

computer system that combines many tools into a central location, including SPO, 

RIMAIR and ARROWS (Sax, 2012, p. 2). In creating AVCALs most of the work is

centered on using the SPO software, a commercial, off-the-shelf product. For the purpose 
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of this research, SPO and ARROWS are not used to analyze key factors contributing to 

RBS output.  

NAVSUP WSS Office Code N421 wishes to have a stand-alone organic system 

like NAVARM that will provide them with more flexibility in building AVCALs for 

different platforms and sites, and that can be adjusted easily for various Weapon Systems 

(WS). Even with a tool like NAVARM, the N421 team, to some extent, is unsure about 

how cost is influenced by the previously mentioned factors (Huff, personal 

communication, July 12, 2017). 

B. SCOPE 

This thesis will identify the factors that have the greatest impact on NAVARM 

RBS cost. Through design of experiments (DOE), we develop meta-models that predict 

the total AVCAL cost for various aviation sites located ashore and at sea. The research 

will use NAVARM version 1.31. It will identify NAVARM RBS output (RBS cost) by 

varying a combination of factors. Separate analyses are performed by site location.  

This research is expected to help reduce the N421 production run and analysis 

time by an amount between two and fifteen hours per week. The research will afford 

N421 the opportunity to better serve allowance builders in building AVCALs, and 

answer data calls concerning NAVSUP WSS budget.  

In addition, the NED tool is developed and implemented in an environment that 

allows N421 the opportunity to replicate the analyses presented in this thesis as well as 

conducting new experimentation by varying the previously mentioned factors. However, 

as currently implemented, NED does not allow the addition of new factors or test cases 

from those presented in this study. 

C. THESIS OUTLINE 

The four remaining chapters of this thesis are organized as follows: Chapter II 

explores the history and background of RBS and acknowledges previous research 

completed by personnel who work for NAVSUP WSS Office Code N421. Chapter III 

provides the methodology required to create the DOE as well as the importance and 
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reasoning behind the Sensitivity Analysis (SA) technique. Chapter IV explores the results 

of the SA and Regression analysis conducted from the DOE simulated trials. Chapter V 

provides conclusions, future work, and recommendations.  
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II. BACKGROUND

The difficulty lies not so much in developing new ideas as in escaping 

from old ones.  

—John Maynard Keynes, 

British economist 

This chapter will expound on the RBS history and its significance within the U.S. 

Navy. It will present a theoretical view of the NAVARM RBS solution, and the SA 

accomplished by using the ARROWS model. 

A. LITERATURE OVERVIEW 

Every military service is in dire need to improve system efficiency, reduce costs, 

and keep fleet assets like aircraft Fully Mission Capable (FMC). A quick overview of 

history will show that the RBS approach, both in concept and in practice, can assist the 

services in achieving that goal. The inventory models that use the RBS concept are not 

the only models in the U.S. military, but the RBS concept is one that supports all service 

branches.  

1. Air Force Base Field Testing of Inventory Model for Repairable Items

While Sherbrooke (2004, p. 60) was working for the RAND Corporation during 

the 1960s, he developed and implemented an inventory model for the Air Force known as 

the VARI-METRIC model. This concept is the basis of the ARROWS, SPO, and 

NAVARM RBS approaches to establish inventory levels. The concept develops an 

approach to measure performance of supplying parts by measuring backorders instead of 

fill rate. Fill rate is a percent measure of demands met as orders are placed (Sherbrooke, 

2004, p. 11). For the remainder of this thesis we use the terms “RBS approach,” “RBS 

model,” or simply “RBS” to refer to VARI-METRIC concept. Sherbrooke initially tested 

his model at Hamilton Air Force Base (AFB). With the help of computer simulations, he 

field-tested one tactical aircraft type, which resulted in an increased fill rate from 82.8% 
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to 91.2%, while reducing total investment cost from $1.84M to $1.45M. Even more 

significantly, the aircraft reduced its nonoperational rate by 42% (Sherbrooke, 2004, p. 

10). Despite this promising result, the VARI-METRIC model was initially criticized

because only one aircraft type was tested (Sherbrooke, 2004, p. 10). The Air Force then 

conducted a major test of the model at George AFB, which included three major aircraft, 

the F-4C, F-104, and F-106, during two six-month periods (Sherbrooke, 2004, p. 10).  

The first six-month period was the “pretest” period. During this period, the Air 

Force developed a baseline with its current model to compare with the field-testing 

results of the RBS model. The field testing occurred from March 1, 1965, until August 

31, 1966. During both the pretest and field testing period, three aircraft types along with 

3,673 repairable items were evaluated, and the results were outstanding. As presented in 

Figure 1, the RBS model improved performance, and reduced the investment (budget) by 

nearly half. Sherbrooke and his team also noted that a reduction in Special levels (seen in 

Figure 1) from 167 to 28 was not appropriate for the Air Force to achieve large 

reductions in stock levels. They also noted that had improvements been under 10%, they 

would have dismissed the overall test, but it is clearly seen from the summary results 

presented in Figure 1 that this is not the case (Sherbrooke, 2004, p. 11).  

Figure 1.  George AFB test results during Sept. 1, 1965–Aug. 31, 1966. 

Source: Sherbrooke (2004). 
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2. RBS Implementation into Naval Aviation

The RBS inventory model was first implemented and tested for the Air Force in 

1966. The Navy did not implement the RBS model until the mid-1980s. The Chief of 

Naval Operations directed the Navy Supply Systems Command to implement RBS, and 

directed aviation supply to embrace the concept in 1985 (Naval Inventory Control Point, 

2008, p. 4). RBS was first used to develop pack-up kits for the SH-60B light airborne 

multipurpose system, a program used by the U.S. Navy for anti-submarine warfare. 

(House, 2000, p. 46) Later, the Operational Analysis Department in Mechanicsburg, PA, 

was tasked with the development and implementation of the RBS model to create 

AVCALs for all aviation platforms. The resulting model is known as ARROWS.  

ARROWS testing was accomplished by comparing model predictions with the 

actual inventory from the Aviation Supply Office for the SH-60B and F14A during the 

USS Enterprise deployment of 1986 (Strauch, 1986, p. ii). The ARROWS model results 

were compared to the Navy’s current model, (called the Availability Centered Inventory 

Model (ACIM)) and their findings revealed that the ARROWS model maintained a high 

level of FMC aircraft, reduced AVCAL package cost, and improved overall Ao  (Strauch, 

1986, p. ii). The analysis team’s recommendation was to replace the ACIM with 

ARROWS, and to start using RBS for future at sea testing. ARROWS would become the 

Navy RBS approach for aircraft inventory support (Strauch, 1986, p. 26). 

In 1993, the U.S. Navy was able to fully integrate the RBS concept on board the 

USS America (CV-66) with the RBS AVCAL. This initiative and analysis reduced the 

traditional AVCAL dollar investment by $33 million. This was accomplished by 

increasing the cheaper weapons replaceable units National Item Identification Number 

(NIIN) range by 24% while decreasing the expensive weapons replaceable units NIIN 

allowance quantity (House, 2000, p. 46).  

3. Readiness Suite

ARROWS continued to dominate as the Navy’s RBS model throughout the 

1990s, as desktop computers improved in computing power. The overall structure of the 

ARROWS modeling system migrated from a DOS version to a Windows-based operating 
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system (Sax, 2012, p. 1). Along with ARROWS, the Navy had a multitude of demand-

based models and simulators. Instead of cluttering analyst desktops with a slew of tools, 

the Navy developed the Readiness Suite in 2005. This suite included the web-based 

Naval Online Allowance Handling (NOAH) system, which improved effectiveness of 

inputting data, standardized business rules, automated data management, and allowed 

availability of multiple tools to over 900 users in the Navy organization. (Sax, 2012, p. 1) 

As more RBS concepts evolved and multiple tools became available to the 

analyst, OPNAV authorized ARROWS, SPO, ACIM, and other models to be included

in the Readiness Suite, which is depicted in Figure 2 (Chief of Naval Operations, 2011, p.
8. Figure 2 shows more tools and options available through the Readiness Suite than we

will discuss. For the purpose of this research, our interest is primarily with the RBS 

concept for aviation, and those models that are used to plan for allowancing. We bring to 

the reader’s attention the plethora of tools the analyst has available at NAVSUP WSS. 

Note: The tools in Readiness Suite are not available to the researcher, and are only 

mentioned for informational purposes. 

Figure 2.  Readiness suite components and interactions. Source: Sax (2012). 
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It is also worth noting that tools like SPO are commercial, off-the-shelf software 

that will be used in conjunction with other tools like ARROWS, TIGER (a tool similar to 

ARROWS but used for maritime WS), and ACIM. Sax states in the paper titled, Aviation 

Allowancing RBS Overview, that SPO is a “Flexible model used to compute Site Demand 

Based Levels (SDBLs), Quarterly Wholesale Levels, Adhoc (Delta) Wholesale Levels, 

and Readiness Based (RBS) Allowances for AVCALs and large SHORCALs [Shore-

based Consolidated Allowance Lists]” (Sax, 2012, p. 3). The pictorial layout of the suite 

shows that experimental designs could be difficult to investigate (Huff, personal 

communication, July 12, 2017). 

B. THEORETICAL FRAMEWORK 

When the Navy adopted the RBS approach, it developed mathematical 

formulations to calculate the required spares for aircraft AVCALs and SHORCALs. This 

section explains the RBS theory behind the NAVARM model.  

1. RBS Modeling Calculations

Before the basic RBS model calculations are examined in detail, the RBS 

objective needs to be discussed. According to OPNAV Instruction 4441.5A, the RBS 

concept is a methodology for 

spares and repair parts allowance determination to ensure that prescribed 

readiness thresholds and objectives are achieved at the lowest possible 

cost. Readiness thresholds are expressed as either operational availability 

(Ao) or full mission capable (FMC) and or mission capable (MC) rates. 

The term “RBS” applies to single echelon and single indenture systems, as 

well as their multi-echelon (ME) and multi-indenture (MI) extensions. 

(Chief of Naval Operations, 2011, p. 1) 

Sherbrooke outlines the following assumptions for the VARI-METRIC theory 

used for RBS: 

 All locations and NIINs follow a (s-1, s) inventory policy, where s (the

inventory position) is the largest stock level determined from a location.

When an order is placed inventory position is reduced by one to meet the

demand, which triggers a reorder. Thus, the reorder point is s-1. An order
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quantity of one is justified by the fact that the NIINs considered are high 

cost and low demand. 

 The expected backorders (EBO) by location are calculated based on a

Poisson assumption for the rate of the average pipeline for each NIIN.

 In theory, the overall inventory position s is the number of NIINs on-hand

plus the order quantity minus the EBOs.

 When a NIIN is not repairable then a new one is ordered to resupply the

location. Also, when the order quantity equals one the inventory position

is constant. (Sherbrooke, 2004, pp. 24–25)

The following sub-sections describe the RBS process in sequence. 

a. Average (Resupply and Repair) Pipeline Calculation

The RBS model will calculate the average pipeline for both the resupplying and 

the repairing materiel required to keep all fleet assets mission capable. These calculations 

are presented in Equations (1) and (2): 

Resupply Pipeline =
90

MRF QPA NUMWS WFHRS HPOST    
 
 

,  1

Repair Pipeline =
90

RPF QPA NUMWS WFHRS IMARPT    
 
 

,  2

where: 

MRF ~ maintenance rate to failure (number of part failures per 100 flying hours 

that are sent to depot for repair); 

QPA ~ quantity per application (number of a particular part per aircraft); 

WFHRS ~ wartime flying hours (number of flying hours a squadron fly per 

quarter divided by 100); 

HPOST ~ high priority order and ship time (number of days to transport a part 

from the stock point to the end user when an MRF failure occurs); 

NUMWS~ number of aircraft (number of type aircraft in the squadron); 

RPF ~ rotable pooling factor (number of part failures per 100 flying hours that are 

repaired at the location); and 
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IMARPT ~ intermediate maintenance activity repair time (number of days 

between the time of failure and the time ready-for-issue part is installed). 

(Cardillo, personal communication, December 12, 2016)     

The “90” in the denominator of Equations (1) and (2) is a scaling factor to convert days 

to quarters. Equations (1) and (2) are used to calculate the average number of parts that 

are within both pipelines. In addition, RBS will find Total Pipeline by summing Resupply 

and Repair pipelines and this value will be used to calculate the EBOs shown in Equation 

(3). (Sax, 2012, p. 30) 

b. Expected Backorders Calculation

Palm’s Theorem is the foundation for inventory theory of repairable NIINs. 

Sherbrooke (2004, p. 22) states its “…importance is that it enables us to estimate the 

steady-state probability distribution of the number of units in repair from the probability 

distribution of the demand process and the mean of the repair time distribution.” This 

implies that knowing just the mean of the repair time distribution, and not the distribution 

itself, suffices. EBO is calculated as a function of the inventory positions s as follows: 

1

[ ; ] ( )
!

pipeline x

x s

e pipeline
E BO s x s

x



 


 

.  3

The x in the Equation represents the number of failures, whereas the s is the inventory 

position. Pipeline is the total pipeline (described above). [ ; ]E BO s  calculates expected 

backorders by NIIN for candidate files (i.e., Access database that contains data for 

multiple factors across many platforms and site locations) developed by the NAVSUP 

WSS Office Code N421 analyst for each particular site or platform. Naturally, as s 

increases [ ; ]E BO s  decreases.  

c. Supply Delay Calculation

Once [ ; ]E BO s is calculated, the next step for the RBS approach is to calculate the 

average amount of time that the system is down (i.e., supply delay) with respect to 

backorders as follows: 
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Supply Delay
[ ; ]

WFHRS
(MRF+RPF)×QPA ×

2160

E BO s

NUMWS





.  4

The denominator of the Supply Delay Equation (4) is a quarterly unit of measure 

and is also essential in calculating the system operational availability seen in Equation (5) 

(Cardillo, personal communication, December 12, 2016). The 2,160 in Equation (4) is the 

number of hours per quarter. 

d. Item Operational Availability Calculation

The  calculation in Equation (5) is a key component for the RBS approach and 

is necessary to determine whether a system is operational based on maintenance and 

supply requirements (Sherbrooke, 2004, p. 38). NAVSUP defines Ao for a given system 

as: 

 Ao  = 
   

QPA

1

Removals×MTTR +E BO;s
1+

NUMWS×QPA

 
 
 
 
 
 

,  5

where: 

Removals =  MPR+RPF ×WFHRS  for the item;

NUMWS = number of type aircraft in the squadron; and 

MTTR = mean time to repair the WS. (Sax, 2012, p. 31)

According to the OPNAV Instruction 4441.5A,  is the best way to measure readiness 

for Navy parts associated to systems, subsystems and equipment essential to all ship and 

aircraft missions (Chief of Naval Operations, 2011, p. 3). 

 Ao 
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e. Cost to Reduce Supply Delay and Cost Effectiveness Ratio Ranked

“Shopping List”

Equation (6) shows a critical calculation made by most RBS approaches. The 

equation is used to build a “Shopping List” by ranking each NIIN’s stock level (Cardillo, 

personal communication, December 12, 2016): 

Cost Effectiveness Ratio = 

 

Unit Price

Decrease In Supply Delay×
2160

WFHRS
MRF RPF 

.  6

The heuristic rule for the RBS-based AVCAL inventory levels calculates the cost 

effectiveness ratio for different values of s for all items, and sorts the ratios in descending 

order. The shopping list begins with the items and stock levels at the top of the list, until 

enough items have been added to reach the desired Ao (J. Salmerón, personal 

communication, May 02, 2017). 

2. NAVARM

For the purpose of this research, NAVARM will be considered a “black box.” 

Furthermore, this research is only interested in the data inputted in, and the direct output 

from, NAVARM. NAVARM was developed by a team located at the Naval Postgraduate 

School in 2016 in response to a NAVSUP WSS request for an RBS model that is flexible 

and transparent in its methodology. NAVARM is adjustable by means of dashboard 

settings for tolerance, iterations, and maximum solution time. The NAVARM RBS 

approach applies Equations (1) through (6) with some refinements that we do not detail in 

this document. NAVARM uses a heuristic optimization to calculate NIIN allowances that 

minimizes total cost and ensures the target Ao for each WS is satisfied. NAVARM 

applies to single-site and multi-indentured problems (Salmerón, 2016).  

C. ARROWS SENSITIVITY ANALYSIS 

In 2012, Sax conducted an SA of the ARROWS RBS model in the NAVSUP 

WSS Readiness Suite. His SA is different from the one developed in this thesis, but it is 
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significant to consider while performing SA on NAVARM. His analysis was conducted 

on both RBS and RIMAIR, and the inputs were adjusted from 10% to 30%. The 

inputs that were part of the ARROWS SA are as follows: maintenance rate to failure 

(MRF), rotable pool factor (RPF), I-level Turn-around Time (ITAT), maintenance cycles 

(OPTEMPO), FMC, wholesale delay time (WDT), and Beyond Capability of 

Maintenance (BCM, described below) (Sax, 2012, pp. Appendix I-1-2). His analysis 

consisted of two SHORCALs, one amphibious class ship and one aircraft carrier. This 

research will only analyze SA associated with the Aircraft Carrier (CV) AVCAL.  

The MRF indicates when a NIIN becomes BCM (i.e., failure rate for parts unable 

to be repaired at the Organizational (O) or Intermediate (I) Maintenance Levels), while 

RPF is the rate at which an operating site can repair an I-level failure (Sax, 2012, p. 14). 

The ITAT is the number of days it takes an O or I-level repairable NIIN to return to the 

organization’s supply system. WDT is a measure of days from the time of requisition 

until the NIIN is shipped (Sax, 2012, p. 24). Noteworthy in this analysis, the BCM is not 

an ARROWS model input, but it is used to measure the overall change in output as both 

MRF and RPF are adjusted. (Sax, 2012, p. Appendix I-1) Next, the Operational Tempo 

(OPTEMPO) is the number of wartime flying hours for each NIIN of a particular WS 

(Sax, 2012, p. 23). Lastly, the FMC factor used in the analysis is known as the 

Operational Availability (Ao) (Sax, 2012, p. 24.) Each WS has its own target Ao, and as 

these goals are varied, the output is recorded and presented in Figure 3. 
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Protection and endurance are not pertinent to this research and are the factors used for 

RIMAIR. The cell for protection at a 30% increase is blank. It is unclear whether or not 

this was an infeasible setting because it is not discussed in the document, nor labeled in 

the image used.  

Figure 3.  Results from SA of CV AVCAL. Source: Sax (2012). 

Figure 3 indicates that the dominant factors are, in order of importance: 

OPTEMPO, Rates (i.e., combination of MRF and RPF), and Ao . The “dominant factors” 

are those inputs that AVCAL cost is influenced by. Sax mentions that WDT is the largest 

driver, but this is not seen in Figure 3 (Sax, 2012, p. Appendix I-3). The discrepancy may 

be explained because he changed days by percent increments, whereas a better approach 

would be to adjust WDT along with HPOST by a sequential integer value. As WDT is 

reduced by one day, it can reduce the value of an AVCAL by 3%, which is very 

significant. Sax also mentions that high priority order and ship time reacts similarly to 

WDT because both measure the amount of time in days it takes to get parts into the hands 

of customers (Sax, 2012, p. Appendix I-4).  

Some aspects taken from Sax’s SA on CV AVCAL. The factors MRF, RPF, and 

 have a nonlinear relationship with the cost output, whereas the rest of the factors 
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appear to be linear. Sax mentions that there is a relationship between the MRF and RPF 

given they are both used to calculate the pipeline (Sax, 2012, p. Appendix I-1). However, 

it is not obvious how those factors interact with each other. In summary, the SA study 

conducted by Sax appears to use one-factor-at-a-time variation, and clearly suggests CV 

AVCAL cost factor dominance.  
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III. DATA REVIEW AND METHODOLOGY

If you can’t fly then run, if you can’t run then walk, if you can’t walk then 

crawl, but whatever you do, you have to keep moving forward.  

—Martin Luther King Jr., 

civil rights activist 

In Chapter II, we explored the history of the RBS concept and its importance to 

the U.S. Navy. This chapter will discuss data review, DOE, and SA. These are three 

essential steps to better identify NAVARM’s most influential factors on cost. This 

research develops NED, a tool that can be used by the NAVSUP WSS analysis team to 

estimate impacts on project cost given factor variability. (See Figure 4.)  

Figure 4.  Research design flowchart 
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Figure 4 lays out the four steps of the methodology, starting in the upper left-hand 

corner. First, observe the blue block labeled Candidate File Factors. The input data is 

collected from various aviation sites from both Navy and Marine Corps aviation 

platforms. The key factors are scaled (orange dashed box) by multiplying them with a 

portion value generated using the Nearly Orthogonal and Nearly Balanced (NOB) mixed 

design spreadsheet NOB_Mixed_512DP_V1.xlsx. (Vieira, 2012) Once factors are 

modified the Microsoft Access database (used for the baseline scenario provided by 

NAVSUP) is renamed and saved, therefore maintaining the overall integrity of the 

original data file.  

Second, NAVARM (black box) retrieves the newly named data file and initiates 

its RBS solving process.  

Third, once NAVARM calculates allowances for all NIINs and cost, RBS cost is 

extracted from the NAVARM RBS worksheet (light blue block) and saved to the 

spreadsheet containing the NOB factor portions (yellow block). This step matches input 

and output data (green block).  

Fourth, we conduct the statistical analysis to determine the impact of the factors, 

as well as fitting a regression line to the data to create a meta-model that estimates 

measured output. Finally, NED (red box in bottom right of Figure 4) is developed for 

NAVSUP WSS Office Code N421 in an Excel format so that the N421 analyst team can 

adjust factors and see how they influence RBS cost for each site location. In following 

the methodology, we conducted a data review so that the correct DOE is applied. 

A. DATA REVIEW 

Before developing a DOE, this research investigated multiple candidate files (i.e., 

data files used by NAVSUP WSS) and the factors that we, along with NAVSUP WSS, 

consider likely to be significant. The data review provides a better way of understanding 

the factors available to the research prior to conducting DOE, and affords us with the 

opportunity to identify the best method for manipulating data fields in the test candidate 

files.  
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1. Factors and Various Candidate Files 

The candidate files are developed by NAVSUP WSS analyst Office Code N421 

in a Microsoft Access database, and those used in this research appear in Table 1.  

Table 1.   Database candidate files by location 

 

 

The candidate files will be referred to by their test candidate name when 

discussed in both chapters III and IV. Table 1 describes the platform and location for 

each candidate file by description and location category. We have a wide range of 

platforms from shore to sea, as well as aviation data that spans from west to east coast. 

To begin, the factor discussion will use the USS Harry S. Truman (HST) test 

candidate name to show its key tables along with each factor’s definition. Figure 5 

displays the tables ArrowsCandidate, ArrowsParamSW, and ArrowsParamWS, which 

contain all of the factors we use in this research. We omit additional figures of 

ArrowsParamSW and ArrowsParamWS tables, but will list those factors that can be 

found in each.  
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Figure 5.  HST test candidate file identifying required tables 

The factors located in ArrowsParamSW table are NUMWS, Ao, and WFHRS. 

ArrowsParamWS contains the MTTR factor only. Figure 6 displays the ArrowsCandidate 

table, which contains the following factors: QPA, IMA_RPR_TM (also known as 

IMARPT), LP_OST (also known as LPOST), HP_OST (also known as HPOST), 

WHSL_DELAY (also known as WDT), UNITPRICE, MRF, and RPF. In addition, it 

contains two factors not seen in Figure 6: EXP_PRG_W (also known as EXPWFHRS), 

and FLY_HRS (also known as FHRS). Note: NAVARM also uses the ArrowsParamCS 

table in its calculations, but that table does not contain any factors for this research. 
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Figure 6.  HST test candidate file factors in ArrowsCandidate table 

For reporting purposes, we also show the number of NIINs in each candidate file. 

The number of NIINs and number of WS will vary per candidate file. (See Table 2.) 

Neither one is a factor in our DOE. They are fixed parameters associated with each case. 

The number of NIINs shown in Table 2 includes RBS-only items. 
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Table 2.  Baseline candidate file specifications 

Test Candidate Name # of RBS NIINs # of WS Type 

 𝑨𝒐 Target

Range* (%) 

HST 11,204 7 59-65 

BON 4,145 7 65-82 

LEM 77,209 23 46-58 

BAT 5,777 7 65-80 

NOR 501 1 63 

MIS 2,374 3 53-66 

MAL 30,181 7 59-75 

OCA 35,586 10 46-58 

DEN 3,379 1 85 

IWO 2,683 6 65-80 

*Note: Ao range is for cases with multiple WS.

a. Factor Definitions

The next step in completing the data review is to briefly define each factor used to 

identify NAVARM’s output sensitivity. All factors defined below will have their baseline 

values adjusted within a range of 10% .   

 The factor EXP_PRG_W [expanded war flying hours] is the quarterly

wartime flying hours for a particular item within a certain WS. The

expanded war flying hours are determined by dividing a given

maintenance cycle rate by 100 for each NIIN in a WS. This value indicates

the overall population of the NIIN for that WS. (Oswald et al., 2015, p. 6)

 The factor QPA [Quantity Per Application] is the total quantity of each

NIIN for each WS. (Oswald et al., 2015, p. 6)

 The factor IMA_RPT_TM [intermediate maintenance activity repair time]

represents the days necessary to receive a NIIN from organizational

maintenance plus the time required for scheduling and repairing the part at

the intermediate maintenance facility. This assumes that the essential part

to be repaired is available in the system. (Oswald et al., 2015, p. 7)
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 Both factors LP_OST [Low Priority Order and Ship Time] and HP_OST 

[high priority order and ship time] are the number of days required to ship 

a low- and high-priority NIIN, respectively, from the supply system during 

the requisitioning process (Oswald et al., 2015, p. 8). Both factors are 

highly correlated; therefore, the low priority factor is dropped from this 

research. Although the high priority factor appears discrete, for the 

purpose of this study, we vary it by percentage like all the other factors.

 The factor WHSL_DELAY [wholesale delay time] represents the number

of days required for the wholesale system to make a ready-for-issue part

available to satisfy a demand at the customer level. (Oswald et al., 2015, p.

8)

 The factor UNITPRICE [Unit Price] represents the price for each NIIN.

(Oswald et al., 2015, p. 10)

 The factor MRF [maintenance rate to failure] represents the number of

failures for each NIIN that cannot be repaired at the site location “per

flying hour (or maintenance cycle) per item installed.” (Oswald et al.,

2015, p. 10)

 The factor RPF [rotable pooling factor] denotes the number of part

failures that are repaired at each site location per flying hour. (Oswald et

al., 2015, p. 10)

 The factor FLY_HRS [flying hours] represents the length of use for each

part and it can be used to determine a part’s rate of failure.

 The factor MTTR [mean time to repair] identifies the organization’s

maintenance hours required to restore a failed WS back to operating.

(Oswald et al., 2015, p. 12)

 The factor WS_number [number of aircraft] specifies the number of

aircraft to support a specific WS. (Oswald et al., 2015, p. 13)
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 The factor RBS_RDGoal [RBS performance goal] is also known as the

 goal, which is a percentage used to represent the targeted FMC.

(Oswald et al., 2015, p. 14)

 The factor WAR_FHRS [wartime flying hours] is the number of “aircraft

times the flying hours per quarter per aircraft” in a wartime scenario.

(Oswald et al., 2015, p. 15)

b. Factor Correlations

We construct a correlation matrix in the statistical software JMP (2017) to 

identify whether there are any highly correlated factors other than the previously 

mentioned LP_OST and HP_OST. Observing Figure 7 reveals multiple factors that have 

a strong positive or negative correlation. For example, the factors QPA and 

EXP_PRG_W have a correlation of 0.96, RBS_RDGOAL and MTTR have a correlation 

of 0.81, and RBS_RDGOAL and HP_OST have a correlation of -0.99.  

Figure 7.  Factor correlation matrix for the HST candidate file 

The DOE developed for this research seeks to determine the interaction between 

factors in order to estimate the NAVARM output (specifically cost) as a function of 
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changes in the factors. Specifically, we will estimate AVCAL RBS cost with factors 

ranging between 10%  of their base value (i.e., from their nominal value in the specific 

candidate file provided by NAVSUP). Section C of this chapter provides a more in-depth 

discussion of the SA techniques in regards to the NOB DOE.  

2. NAVARM Output

The last pieces of the data to be reviewed in this research are the required 

dependent variables. As each factor (independent variable) defined previously is 

modified, the RBS cost and time for a NAVARM RBS solution will be collected. Figure 

8, features two sections: the left side is the NAVARM Dashboard, and the right side of 

the figure is the RBS solution worksheet. NED focuses on RBS best cost (incased in the 

green enclosed box on the left side). We collect the total time to obtain the solution 

(incased in the yellow enclosed box on the left side) located within the dashboard as well, 

but we use it for internal purposes to track progress of the DOE trial runs. In the DOE, 

the dependent variables are matched to corresponding independent variable changes for 

its specific trial. A complete explanation of how this is accomplished is discussed next.  
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Figure 8.  NAVARM split screen of output data collected 

B. EXPERIMENTAL DESIGN 

Before explaining the DOE, the standard settings of NAVARM will be discussed 

for each trial. The following discussion identifies the most effective settings in 

NAVARM in preparation for the DOE simulation trial runs. Parameter settings in 

NAVARM will remain the same for all trial runs to maintain consistency in the 

experimental design.  

1. NAVARM Configuration

Standard settings for NAVARM trial runs appear in Figure 9, except as noted 

below. A mix of settings is available. Some are not related to performance. Others are 

intended to strike a balance between time spent and solution quality (J. Salmerón, 

personal communication, May 02, 2017).  
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Figure 9.  NAVARM Dashboard DOE simulation standard configuration 

The focal areas to setup NAVARM for this research appear in the yellow and blue 

boxes of Figure 9. To start, the yellow boxes are the file names of the candidate file 

containing the required factors for that specific experiment. In this case, they are named 

NED, because the original candidate file must remain unchanged for future experimental 

trials. Outlined with yellow boxes, the candidate file name and its site identification 

(SITE_ID) are entered in columns H and M under the Database filename section of 

NAVARM Dashboard. Again, we enter the file name and SITE_ID under column C in 

their second location next to their Case # that the user inputs. In this case, the file and 

SITE_ID are case number 17.  

The three settings (shown in the blue box) controlling the length in a NAVARM 

run are “Maximum Time (minutes),” “Maximum # of Main Passes,” and “Max. # of 

Refinement & Polish per Pass.” The Maximum Time (minutes) is the time limit allowed 

for NAVARM to find a solution, including the time other tasks (such as data preparation, 
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RIMAIR execution, etc.). The special case of zero is used to set an unlimited amount of 

time, and this is the default choice for NED. The Maximum # of Main Passes relates to 

the number of global iterations for NAVARM to find a solution for the RBS portion of 

the model. More passes may produce a better solution, but will require more time. The 

default value for this input is ten, but we changed it to five for NED in order to reduce 

run time. The Max. # of Refinement & Polish per Pass is used to refine the solution, and 

the input value for this setting is ten. Again, the larger this value is, the longer it will take 

NAVARM to solve RBS.  

Note: Run time may vary by computer. The processor used in this research is an 

Intel (R) Atom (TM) x7-Z8700 with a 1.6 GHz CPU, and it takes approximately seven to 

fifteen minutes for NAVARM to produce a solution, depending on the candidate file. 

2. Simulation by Visual Basic for Applications

Considering that NAVARM is a tool developed and operated in Microsoft Excel 

and Visual Basic for Applications (VBA), we develop a set of VBA subroutines that 

conduct a simulation with the NAVARM model. The following is a list of steps taken to 

conduct the NAVARM simulation based on the NOB input values: 

 The first step is to select suitably scaled values from the NOB spreadsheet,

and record those values in a workbook named NED.xlsm. The use of the

latter spreadsheet will be discussed more in Section C, subparagraph 2 of

this chapter.

 Second, a subroutine named fileNED in the spreadsheet NED.xlsm will

access the specified candidate file and change property Field Size in

Microsoft Access to a “double” (i.e., floating-point that handles most

decimal numbers) so that each data field can be manipulated.

 Third, the subroutine, named LHSscalar, retrieves the scaled values for all

thirteen factors defined above. Structured Query Language (SQL) is used

to open the Access database and modify each field for each factor with the
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NOB value in the workbook named NED.xlsm. SQL then closes the 

database and saves changes made to the factors. 

 Fourth, the last subroutine named runRBS would open NAVARM, input 

the candidate file name along with SITE_ID, and then launch NAVARM. 

Once NAVARM establishes a solution for that trial the subroutine copies 

the best cost value and the time it takes NAVARM to solve (for internal 

use only to track the simulation).  

 Finally, we wrap the subroutines with a for loop that iterates through all of 

the design points that are defined by the NOB DOE. Once the for loop 

reaches the end of the NOB design, we conduct regression analysis on the 

data created with new inputs and measurable output (NAVARM RBS 

cost). Also, with an understanding of the data and process of simulation, 

the research helps determine the best method of measuring factor 

dominance as well as regression analysis with the newly developed data. 

C. SENSITIVITY ANALYSIS TECHNIQUES 

SA is a method for assisting the decision makers in determining future differences 

while continuing to shape their current policies or business rules. SA requires data that 

provides us with the ability to investigate the designated dependent and independent 

variables. We conducted SA upon completing multiple DOEs discussed later in this 

section using a NOB design that captures changes in AVCAL costs as independent 

variables vary. 

We used the following SA techniques: One-Factor-at-a-Time (OAT) analysis, 

scatter plots analysis, and regression analysis. Stepwise regression facilitates construction 

of predictive meta-models, which are the basis of NED. 
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1. One-Factor-at-a-Time

The OAT is a historical method used to identify main effects. It adjusts one factor 

at a time while keeping all other factors constant. We use OAT in this thesis to provide a 

basis for comparison with prior work. 

The OAT design is based on Equation (7). The length is determined by the number 

of variations made to each factor and the number of factors. Each factor is varied up to 

99%  in increments of 10%. The final increment is 9% to avoid errors generated if the 

factors are zero or too large. The k in Equation (7) is the number of factors to be examined. 

(Saltelli et al., 2000, p. 68) The value 20 is the number of levels for each factor.  

20 1OATdesign k  .  7

As a result, the overall OAT design will consist of 261 trials based on 13 factors. 

After completing the OAT trials, SensitivityRank, defined in Equation (8), will 

determine factor ranking: 

max min

max

Para Para
SensitivityRank

Para


 ,  8

where 

maxPara  = Maximum value of the measured output (RBS cost) 

minPara  = Minimum value of the measured output (RBS cost) 

SensitivityRank yields a number between zero and one (Saltelli et al., 2000, p. 

176). A value closer to one indicates high output variation, while a value closer to zero 

indicates the minimal influence on the output. This analysis reflects the interest in 

NAVARM RBS cost.  
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2. Design of Experiments

SA alone cannot identify the most influential factors, but a well-crafted DOE can. 

Saltelli, et al. (2000) state: 

Although there are several differences between physical and simulation 

experiments, sensitivity analysis is based on the same principles as those 

underlying DOE. The selection of inputs at which to run a computer code 

is still an experimental design problem, and statistical ideas for design are 

helpful (Sacks et al., 1989a). Further, much of the terminology used in SA 

has originated in a DOE setting. (p. 51) 

Sanchez and Wan (2015, p. 1798) discuss why OAT may be ineffective, since it ignores 

the potential for factor interactions. A well-designed experiment explores combinations 

of factors that can reveal possible relationships that OAT ignores. 

a. Benefits of using Space-filling Nearly Orthogonal and Nearly Balanced

We used NOB design to vary the factors. The NOB methodology is applicable for 

the following reasons: 

 Latin Hypercube sampling is highly flexible and allows the experimenter

to span the factor space with a sample size that compares favorably to that

of a fractional factorial design. (Sanchez and Wan, 2015, p. 1803)

 According to Vieira, the NOB is a mixed design that is balanced and

orthogonal for all factor types and levels. It has “low maximum absolute

pairwise correlation and imbalance.” (Vieira et al., 2013, p. 273)

 NOB sampling has “good space-filling and orthogonality behavior.”

(Vieira et al., 2011, p. 3608)

Latin hypercubes provide good estimation of factor effects with low variance 

(Saltelli et al., 2000, p. 22). Appendix A contains the correlation matrix and scatterplots 

for the NOB. Note that there is nearly zero correlation among all factors.  
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b. Scatter Plots

Scatter plots are often used to try to visualize the relationship between the 

dependent variable and the factors, but the reader should note that they can be misleading 

in high dimensional cases where projecting to lower dimensions can mask effects. 

Regression is far more reliable (Saltelli et al., 2008, pp. 17–20). As an example, scatter 

plots for the HST candidate file are presented in Chapter IV Section B. 

c. Regression

The NOB affords us the ability to assess the influence of each factor on 

performance measures using regression analysis. Stepwise regression, a well-known 

technique, efficiently allows us to construct meta-models. Figure 10 shows diagnostic 

information that can be used to assess the quality of the model fit for the HST test case. 

After determining which factors are most influential from this assessment, the final step 

is to generate the prediction formula for NAVARM.  

The resulting regression model is presented in Figure 11. In this case, the 

Prediction Expression for HST shows that the meta-model has only main effects when 

estimating the NAVARM RBS cost. The coefficients for each factor are all positive 

except the factor WS_number, which shows a negative correlation relationship to RBS 

cost. We apply this process to the other nine test candidate files using the statistical 

software JMP (2017). 
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Figure 10.  Stepwise regression results example 

 

Figure 11.  Stepwise regression prediction formula 
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IV. ANALYSIS 

Statisticians, like artists, have the bad habit of falling in love with their 

models.  

—George E.P. Box, 

British statistician 

 

In Chapter III, we discussed the methodology for developing data using the ten 

test candidate files. This Chapter analyzes how NAVARM’s RBS cost output is sensitive 

to different factor variations. The regression results are assessed using four statistical 

measures: R-Square adjusted, Root Mean Square Error (RMSE), F ratio, and t Ratio. 

(Cleary and Levenbach, 1982, pp. 43–51) We only display the meta-model results for 

HST test candidate file in Section C, subparagraph 1 of this chapter. In Appendix D, we 

provide the remaining nine test candidate file meta-model results.  

A. ONE-FACTOR-AT-A-TIME RESULTS 

We experimented with the OAT design for a few of the test candidate files prior 

to conducting the NOB DOE to see if any factors largely affect NAVARM RBS cost. 

This method is intended to be informative in observing how sensitive NAVARM RBS 

cost is to each factor. We conducted OAT design in five of the ten test candidates’ files 

listed in Table 1: HST, MIS, BON, OCA and BAT. The OAT experimentation resulted in 

a similar conclusion among all site locations. This result only changes one factor at a time 

without interactions. The sensitivity results (Figure 12) display HST RBS cost as a 

function of changes to the baseline values.  

It is worth noting that the cost of HST allowances appears to increase 

exponentially as the RBS_RDGOAL (baby blue) factor increases.  However, as the factor 

WS_number (number of aircraft) is reduced there appears to be a negative effect on RBS 

cost. Additional SA graphs of the four-other site locations are in Appendix B. The graphs 

capture each factor change as it is increased or decreased from its candidate file baseline 
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value. However, they do not inform us which factors are most influential, nor do they 

identify interaction effects. 

 

 

Figure 12.  HST OAT SA for RBS cost 

B. SCATTER PLOT RESULTS 

Like the OAT design, the scatter plots are often used to assess the sensitivity of 

NAVARM RBS cost as given factors change in value. Two scatter plots, along with fitted 

lines for the factors MRF and RFP, are shown in Figure 13. The rest of the scatter plots 

for each factor can be seen in Appendix C. The scatter plots are a visual tool to show how 

one factor reacts to the output and, in this case, to RBS cost. The formulae created for the 

one factor Bivariate Fit in Figure 13a and Figure 13b are not useful in making predictions 

for the entire model, but they can provide estimates for individual factor main effects.  
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              a. MRF by RBS cost                            b. RPF by RBS cost 

Figure 13.  HST bivariate fit of two factors by RBS cost 

C. STEPWISE REGRESSION MODEL RESULTS 

OAT is a mediocre design for identifying the factor effects, and scatter plots 

provide minimal insight on factor effects. Stepwise regression will best identify 

NAVARM RBS cost sensitivity and provide us a capability in building our best fit meta-

models that will make predictions for all factor variations. 

1. Meta-model Fit 

Finding the meta-model, using the stepwise regression process discussed in 

Chapter III, is the focus of this section. The HST test candidate file data is used to 

illustrate the meta-model fitting for the rest of the experiment. Also, the stepwise 

regression results for NAVARM RBS cost are explained in detail for developing a 

practically significant meta-model.  

Additionally, the nine other test candidate files have been analyzed using the 

same process as HST. Their statistical summaries are available in this Section under 
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Subparagraph 2, but their meta-models can be seen in Appendix D. The meta-models are 

developed by starting with all main, two-way interaction, and quadratic effects. With 13 

factors, there are 78 (13 choose 2) two-way interactions plus 26 (13 times 2) main and 

quadratic effects. The number of potential terms is thus 104.  

The stepwise regression will assess all terms, and while stepping through them, 

find those that are statistically significant for the data. In Figure 14, the stepwise function 

for the HST test candidate file finds only 22 effects out of the 104 that are statistically 

significant in developing the model. We choose those with a t Ratio greater than ten 

because we deem them “practically significant.” Those effects on the lower end 

(highlighted in red box in Figure 14) have less effect on the outcome, and we judged that 

estimation power principally lies in those nine main effects.  

  

Figure 14.  HST stepwise regression results for main, two-way interactions, and 

quadratic effects. 

Figure 15 shows that the reduction in effects from the bounds set on the t Ratio is 

minimal. Figure 15a displays the meta-model with all statistical significant effects 

selected by stepwise regression. Figure 15b displays a meta-model with only main effects 
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(no two-way interactions or quadratic effects) that have a t Ratio greater than ten, as 

discussed previously. Starting at the top, observing both Figures 15a and 15b, the Actual 

by Predicted Plot shows meta-models that have a tight grouping of data points with a 

prediction line (red) that passes precisely through the center of the grouping with minimal 

variation between points, hence the large R-Squares adjusted. In fact, both R-squares 

adjusted are nearly the same, the RMSE are only slightly different, and the reduced meta-

model in Figure 15b has an F ratio nearly twice that of the full meta-model in Figure 15a. 

This reduction in the number terms included in the meta-model does not noticeably 

reduce the effectiveness of the meta-model itself, based on observed plots and statistical 

summaries.  

 

        a. HST Meta-model (Full)                           b. HST Meta-model (Reduced)  

Figure 15.  HST meta-models Actual by Predicted with statistical summaries 

To identify outliers, Studentized Residual plots are displayed for HST NAVARM 

RBS cost in Figure 16. As a check and balance, we conducted Studentized Residual plots 

for all test candidate file meta-models (full and reduced), and they are available in 
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Appendix D. In Figures 16a and 16b, the data points appear tightly fit on the centerline 

(blue horizontal line) leading us to determine that neither meta-model has outliers.  

  

              a. HST Meta-model (Full)                    b. HST Meta-model (Reduced)  

Figure 16.  HST meta-models studentized residual plots 

For simplicity and practicality, we decided to use the reduced meta-model with 

the main effects only. The remaining nine test candidate files were developed using the 

same technique described for the HST test candidate file. While developing the meta-

models it is notable that 60% of the models developed have only main effects (no two-

way interactions or quadratic effects). However, there are four test candidate files that 

have a quadratic effect (RBS_RDGOAL   RBS_RDGOAL). The test candidate files that 

have the RBS_RDGOAL quadratic effect are BAT, BON, IWO, and DEN. The 

interesting characteristic about these four test candidate files is that they are for sites with 

rotary wing aircraft parts. However, we cannot conclude that rotary wing aircraft cause 

this effect.  

Exponential and reciprocal transformations of the factor RBS_RBGOAL show no 

improvement to the overall meta-model development for those with non-linearity. In fact, 

both of those transformations on RBS_RDGOAL cause R-Square adjusted to decrease, 

RMSE to increase, F ratio to decrease, and t Ratio to decrease compared to the non-

transformed meta-models, indicating that the quadratic fits best among these choices.  

Finally, the test candidate file MIS has main effects, no quadratic effects, and one 

two-way interaction (WAR_FHRS   RBS_RDGOAL). Also, BAT and IWO test 

candidate files both have main effects, one quadratic effect (RBS_RDGOAL   

RBS_RDGOAL), and one two-way interaction (WAR_FHRS   RBS_RDGOAL).  
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2. Meta-model Statistics Using Stepwise Regression 

To further compare the prediction power between both HST Full and Reduced 

Meta-models, the percent error for each is displayed in Figure 17 (x-axis in percent). The 

category Meta-model (Full) includes those models developed using stepwise regression, 

but with low t Ratios remaining. However, the Meta-model (Reduced) comprises the 

models with t Ratios that have an absolute value of ten or greater (low magnitude t Ratios 

removed). The red box plot is the prediction error for the reduced meta-model and the 

blue box plot represents the prediction errors in the full meta-model. Significantly, both 

full and reduced meta-models have 50% of their predictions of NAVARM RBS cost 

within the 0.05% to 2% error range. More importantly, it shows the similarity of both full 

and reduced meta-models. In addition, the nine other test candidate percent error box 

plots are available in Appendix E. The results of those nine test candidate percent error 

box plots display for all cases that nearly 75% of their predictions of NAVARM RBS 

cost are less than 3% of error.  

The meta-model statistics are available in Table 3 for NAVARM RBS cost. The 

table contains the statistical measures of the meta-models available in Appendix D. The 

significance of Table 3 is to illustrate that the removal of the low end t Ratio factor does 

not drastically change the performance of the meta-model. In fact, there are some test 

candidates that experience minor changes in R-square adjusted and RMSE, but nearly 

double in value for the F Ratio as effects are removed from the meta-models. 
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Note: The red box plot is HST reduced meta-model. The blue box plot is the full meta-

model. The x-axis is percent error calculated by the difference between actual and 

estimated, divided by actual. 

Figure 17.  HST RBS cost prediction error for full and reduced meta-models 

Table 3.   Test candidate meta-model statistics for NAVARM RBS cost 
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3. Influential Factors Results 

Finally, we provide the NAVARM RBS cost factor influence ranking. In Table 4, 

a list of factors from left to right is displayed for each candidate file. The list is gathered 

from their meta-model developed in stepwise regression. The ranking of the factors is 1 

to 13, representing largest to smallest magnitudes for the t Ratios, respectively. Factors in 

red text are the main effects that are statistically significant, but have been removed from 

the model due to the t Ratio being smaller than ten (i.e., not practically significant).  

Additionally, we count how many times each practically significant factor appears 

in all test problems. We find that the overall most influential factors on cost are (in order 

of importance):  goal, Unit Price, wartime flying hours, maintenance rate to failure, 

high priority order and ship time, number of aircraft, wholesale delay time, rotable pool 

factor, intermediate maintenance activity repair time, and mean time to repair.  

All the test cases, except MAL, have either goal or unit priceas their number 

one factor. The MAL test case has wartime flying hours as its number one factor with 

unit priceas second, and goal as its third. As mentioned in Chapter I, Section A, the 

Marine Corps is operating with less than half their aircraft available. This suggests that 

the remaining aircraft are being overused, resulting in greater wear and tear and yielding 

reduced airworthiness. Since this is based on retrospective data we cannot establish 

causality, but further investigation seems indicated.   
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Table 4.   NAVARM’s RBS cost influence to factors by t ratio ranking 

 

 

D. NAVSUP TOOL  

After identifying the NAVARM output sensitivities and developing the meta-

models, an estimation tool was developed for NAVSUP WSS in Excel using VBA. The 

tool affords NAVSUP WSS, Office Code N421, the ability to make adjustments to 

multiple factors simultaneously, and see how that affects NAVARM RBS cost. 

Implementation of NED will aid N421 in training and planning, and will improve their 

overall understanding of factors that affect RBS sensitivity.  
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V. CONCLUSION  

We demonstrate that the most influential factors to NAVARM RBS cost are  

availability goal, Unit Price, wartime flying hours, maintenance rate to failure, high 

priority order and ship time, number of aircraft, wholesale delay time, rotable pool factor, 

intermediate maintenance activity repair time, and mean time to repair.  

Prior to this research, Sax (2012, Appendix I-4) discovered that wholesale delay 

time and high priority order and ship time were the drivers behind the RBS model. This 

thesis found that both factors influence the output, but they are not the most influential. 

We suggest that future work consider a DOE that varies both factors as continuous 

integers rather than scaling from the baseline value.  

In conducting the OAT design and assessing the scatter plots analysis, we note 

that these historical methods cannot reliably determine which factors are most influential, 

nor can they provide accurate estimates of RBS cost. Stepwise regression, by contrast, 

succeeds at both. Our findings are that 60% of the models have only main effects (no 

two-way interactions or quadratic effects). However, four test candidate files have a 

quadratic effect (RBS_RDGOAL   RBS_RDGOAL). The test candidate files with the 

RBS_RDGOAL quadratic effect are USS Bataan (LHD 5), USS BonHomme Richard 

(LHD 6), USS Iwo Jima (LHD 7), and FMS Denmark. These four test candidate files are 

for sites with rotary wing aircraft parts, but we cannot conclude that rotary wing aircraft 

cause this effect. The MAL test case has unique factor ranking, and suggests further study 

in order to explain these differences. 

NED is developed as a predictive tool for NAVARM RBS cost based on the 

stepwise regression models for the ten test cases, and produces predictions of cost when 

factors vary within the scaled range. The NED meta-model for the USS Harry S. Truman 

has 50% of its predictions within the 0.05% to 2% error range. The results of the other 

nine test candidate files have nearly 75% of their predictions within a 3% or less error 

while predicting RBS cost, and NED allows the user to make predictions of cost for all 

test cases within 7% of actual.   
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 Simulation distinguishes between verification and validation—the former 

corresponds to debugging the model while the latter corresponds to assessing model 

correctness. A large-scale space-filling design such as the NOB acts a stress test on 

simulation models, often exposing software bugs and vulnerabilities. The NOB cannot 

establish validity, but the fact that NAVARM was able to successfully run all input 

configurations generated by the design lends credence to it as a well-verified model.  

Another potential direction for future development is to pool all ten test cases to 

see whether a single comprehensive meta-model can be constructed. This would allow 

investigation of possible model commonalities across the scenarios. 

Lastly, a future study should consider different ranges of scaling than were used 

in the current work. This could change the sensitives of the response to the various 

factors as well as the degree of non-linearity or interaction effects. 
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APPENDIX A. 512 – POINT NOB DOE FACTOR CORRELATION 

AND SCATTERPLOT MATRIX 

 

Note: Correlation and scatterplot matrix show that NOB DOE is space filling with no correlation. 

This makes for an excellent way to experiment with multiple factors covering their full spectrum. 
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APPENDIX B. OAT SA GRAPHS OF MIS/BON/OCA/BAT  

A. OAT DESIGN RESULTS FOR MIS  

 

 
 

B. OAT DESIGN RESULTS FOR BON 
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C. OAT DESIGN RESULTS FOR OCA 

 

 
 

D. OAT DESIGN RESULTS FOR BAT 
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APPENDIX C. HST FACTOR BY OUTPUT SCATTER PLOTS 

 

    a. QPA by RBS cost                        b. IMA_RPR_TM by RBS cost 

 

 

 

      a. EXP_PRG_W by RBS cost              b. HP_OST by RBS cost 
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   a. WHSL_DELAY by RBS cost                          b. UNITPRICE by RBS cost 

 
 

 

        a. FLY_HRS by RBS cost                   b. MTTR by RBS cost 
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     a. WAR_FHRS by RBS cost                 b. WS_number by RBS cost 

 

            a. RBS_RDGOAL by RBS cost      
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APPENDIX D. TEST CANDIDATE FILE META-MODELS 

A. LEM RBS REGRESSION ANALYSIS 
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B. BAT RBS REGRESSION ANALYSIS 
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C. BON RBS REGRESSION ANALYSIS 
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D. NOR RBS REGRESSION ANALYSIS 
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E. MAL RBS REGRESSION ANALYSIS 
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F. IWO RBS REGRESSION ANALYSIS 
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G. MIS RBS REGRESSION ANALYSIS 
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H. OCA RBS REGRESSION ANALYSIS 

 
 



63 

I. DEN RBS REGRESSION ANALYSIS 
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APPENDIX E. FULL AND REDUCED META-MODEL ERROR 

A. LEM FULL VERSUS REDUCED META-MODEL PREDICTION ERROR 

 

B. BAT FULL VERSUS REDUCED META-MODEL PREDICTION ERROR 
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C. BON FULL VERSUS REDUCED META-MODEL PREDICTION ERROR 

 
 

D. NOR FULL VERSUS REDUCED META-MODEL PREDICTION ERROR 
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E. MAL FULL VERSUS REDUCED META-MODEL PREDICTION ERROR 

 

 

F. IWO FULL VERSUS REDUCED META-MODEL PREDICTION ERROR 
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G. MIS FULL VERSUS REDUCED META-MODEL PREDICTION ERROR 

 
 

 

H. OCA FULL VERSUS REDUCED META-MODEL PREDICTION ERROR 
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I. DEN FULL VERSUS REDUCED META-MODEL PREDICTION ERROR 
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